Trace Diagnostics for MTL Specifications MT CPS

Thomas Ferrère¹ Dejan Nickovic² Oded Maler¹

 1 VERIMAG, University of Grenoble / CNRS 2 Austrian Institute of Technology

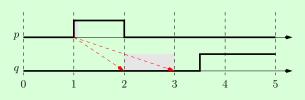
11 April, 2016

Motivation

- Practical question: understand why a simulation violates an MTL property.
- ▶ Problem: **long** simulation trace with **large** alphabet.
- Solution: isolate segments of the trace sufficient to cause violation.

Example

Diagnostics of $\Box(p\to \lozenge_{[1,2]}\,q)$ violation on sample trace



Formalization

Problem (Diagnostics)

Given specification φ and behavior w with $w \models \varphi$, find small implicant θ of φ with $w \models \theta$.

▶ Propositional case

Example

$$\varphi = (p \wedge q) \vee (p \wedge \neg q) \vee \neg r, \qquad w = \{p \mapsto 1, q \mapsto 1, r \mapsto 0\}$$

Formula $\theta=p$ is a minimal diagnostic of φ relative to w. Semantically: any valuation that contains $p\mapsto 1$ satisfies φ .

► Temporal case: syntactic representation? existence of prime implicants?

Metric Temporal Logic

Syntax:

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \vee \varphi_1 \mid \Diamond_I \varphi \mid \varphi_1 \mathcal{U} \varphi_2$$

- ▶ Derived operators: $\Box_I \varphi \equiv \neg \Diamond_I \neg \varphi$
- Semantics:

$$\begin{split} &(w,t) \models p & \leftrightarrow w_p[t] = 1 \\ &(w,t) \models \neg \varphi & \leftrightarrow \dots \\ &(w,t) \models \varphi \lor \psi & \leftrightarrow \dots \\ &(w,t) \models \Diamond_I \varphi & \text{iff} & \exists t' \in t \oplus I, \ (w,t') \models \varphi \\ &(w,t) \models \varphi \mathcal{U} \psi & \text{iff} & \exists t' > t, \ (w,t') \models \psi \text{ and } \forall t'' \in (t,t'), \ (w,t'') \models \varphi \end{split}$$

▶ Models: $w \models \varphi$ iff $(w, 0) \models \varphi$

Partial signals and refinements

Definition

- ▶ **signal**: function $w: (\mathbb{T} \times \mathbb{P}) \to \{0, 1\}$
- ▶ **sub-signal**: partial function $u: \mathbb{T} \times \mathbb{P} \to \{0,1\}$ with $u^{-1} \subseteq \mathbb{T} \times \mathbb{P}$
- ▶ refinement relation: sub-signals $u \sqsubseteq v$ iff $u^{-1} \subseteq v^{-1}$ and $u_p[t] = v_p[t]$ where defined

Proposition

Relation \sqsubseteq defines a **semi-lattice**. Meet operation \sqcap such that $(u \sqcap v)^{-1} \subseteq u^{-1} \cap v^{-1}$, and minimal element $\bot : \emptyset \to \{0,1\}$.

Problem reformulation

Definition

Sub-signal u is **sub-model** of φ iff $w \models \varphi$ for all signals $w \sqsupseteq v$.

Semantic view

- lacktriangle Prime implicant of $arphi = \min$ minimal sub-model of arphi
- lacktriangle Diagnostic of arphi relative to $w = \operatorname{sub-model} v$ of arphi s.t. $v \sqsubseteq w$

Dense-time issues

Unbounded variability sub-models

Example

$$\varphi:=\square(p\vee q) \text{ has minimal sub-models } S\times\{p\}\mapsto 1,\, T\times\{q\}\mapsto 1$$
 for arbitrary $\{S,T\}$ partition of $\mathbb{T}.$

Absence of minimal sub-model

Example

 $\varphi = p\mathcal{U} \top$ has sub-models $(0,t) \times \{p\} \mapsto 1$ for arbitrary t > 0.

Temporal terms

Syntax:

$$\theta := p[t] \mid \neg p[t] \mid \theta_1 \wedge \theta_2 \mid \bigwedge_{t \in T} \Theta[t]$$

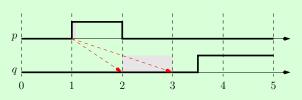
for T subset of time domain, Θ function from time to terms.

Semantics:

$$w \models \bigwedge_{t \in T} \Theta[t] \leftrightarrow \forall t \in T, w \models \Theta[t]$$

Example

Shaded sub-signal corresponds to term $p[1] \land \bigwedge_{t \in [2,3]} \neg q[t]$



Solving dense-time issues

Bounded variability

Definition

normal form terms: $\bigwedge_{i=1}^{m} \bigwedge_{t \in T_i} \ell_i[t]$ with T_i intervals and ℓ_i literals.

Sub-signals with finitely many switching points can be represented as normal form terms.

Minimality

- ▶ introduce **non-standard reals** t^+, t^- for all times t
- terms over the extended time domain

Existence of prime implicants

Theorem

Any satisfiable property φ admits prime implicants.

Proof.

- ▶ Zorn's Lemma: show that any chain of implicants $\theta_0 \Rightarrow \theta_1 \Rightarrow \theta_2 \Rightarrow \dots$ of φ has a maximum.
- ▶ The maximum $\theta_* \equiv \bigwedge_{i>0} \theta_i$ has a simple normal form
- ▶ Show $\theta_* \Rightarrow \varphi$: take $w \models \theta_*$ and assume $w \not\models \theta_n$ for all n
 - there exists ℓ and (t_i) such that $\theta_i \Rightarrow \ell[t_i]$ and $w_\ell[t_i] = 0$
 - ▶ Bolzano-Weierstrass Theorem: we may assume (t_i) monotonic and converging to t_*
 - for arbitrary $\delta>0$ there exists i such that t_i is δ -close to t_*
 - $w_{\ell}[t_*] = 1$, by finite variability $\exists j, w_{\ell}[t_j] = 1$. Contradiction!
- ▶ Thus $\theta_* \Rightarrow \theta_n$ for some n, and $\theta_n \Rightarrow \varphi$ by hypothesis, so the partial order of implicants has a maximal element

MTL extended semantics

Arithmetic on non-standard reals

- ▶ t < t' iff $\Re(t) < \Re(t')$ or $t = t' \neq \Re(t) = \Re(t')$
- $t^+ + c = (t+c)^+$ and $t^- + c = (t+c)^-$

Definition (extended semantics)

For t non-standard real:

- $(w,t) \models \Diamond_I \varphi$ iff $\exists t' \in t \oplus I$, $(w,t') \models \varphi$
- $(w,t) \models \varphi \mathcal{U} \psi$ iff $\exists t' > t$, $(w,t') \models \psi$ and $\forall t < t'' < t'$, $(w,t'') \models \varphi$

Lemma

For t non-standard real: $(w,t) \models \varphi$ iff $\lim_{s \to t} w_{\varphi}[t] = 1$

Selection functions

- Used to select a witnesses of a formula.
- ▶ A function ξ labeled by a formula, such that $\xi_{\varphi \lor \psi}[t] \in \{\varphi, \psi\}$, $\xi_{\Diamond_I \psi}[t] \in t \oplus I$, and $\xi_{\varphi \mathcal{U} \psi}[t] > t$.
- ▶ A **correct** selection function ξ when $(w,t) \models \varphi$ verifies
 - disjunction: $(w,t) \models \xi[t]$
 - eventually: $(w, \xi[t]) \models \psi$
 - $\qquad \qquad \text{until: } (w,\xi[t]) \models \psi \text{ and } (w,t') \models \varphi \text{ for all } t' \in (t,\xi[t])$
- ▶ Bounded variability: ξ piecewise constant / linear with slope 1.

Generating implicants

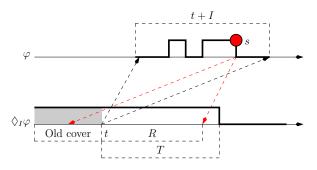
The **diagnostics** of a formula φ :

$$D(\varphi) = \left\{ \begin{array}{ll} E(\varphi)[0] & \quad \text{if } (w,0) \models \varphi \\ F(\varphi)[0] & \quad \text{otherwise} \end{array} \right.$$

Dual **explanation** and **falsification** operators:

$$\begin{split} E(p)[t] &= p[t] & F(p)[t] = \dots \\ E(\neg \varphi)[t] &= F(\varphi)[t] & F(\neg \varphi)[t] = \dots \\ E(\varphi \lor \psi)[t] &= E(\xi_{\varphi \lor \psi}[t])[t] & F(\varphi \lor \psi)[t] = F(\varphi)[t] \land F(\psi)[t] \\ E(\lozenge_I \varphi)[t] &= E(\varphi)[\xi_{\lozenge_I \varphi}[t]] & F(\lozenge_I \varphi)[t] = \bigwedge_{t' \in t+I} F(\varphi)[t'] \\ E(\varphi \ensuremath{\mathcal{U}} \psi)[t] &= E(\psi)[\xi_{\varphi \ensuremath{\mathcal{U}} \psi}[t]] \land \dots & F(\varphi \ensuremath{\mathcal{U}} \psi)[t] = \dots \end{split}$$

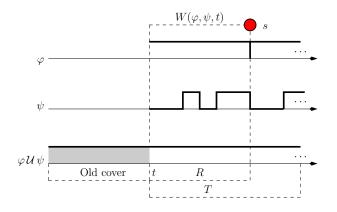
Selection of eventually witnesses



Algorithm

- lacktriangleright pick the **latest** witness s of φ in $t\oplus I$ with t start of domain to cover
- witness accounts for $\Diamond_I \varphi$ throughout $s \ominus I$
- ightharpoonup remove $s\ominus I$ from the domain to cover

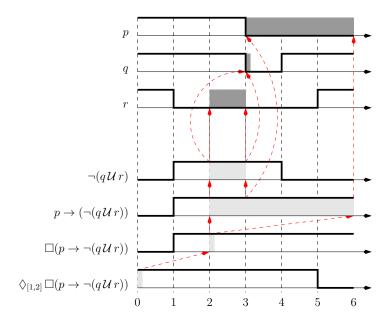
Selection of until witnesses



Algorithm

- pick the **latest** witness s of ψ such that φ holds throughout (t,s) with t start of domain to cover
- witness accounts for $\varphi \mathcal{U} \psi$ throughout (t,s)
- remove (t, s) from the domain to cover

Example solution



Results

Correctness and Completeness

- ▶ term $D(\varphi)$ is solution to the diagnostics of φ and w;
- **small** implicant, not necessarily a **prime** implicant.

Complexity Issues

Proposition

The computation of $D(\varphi)$ takes time in $\mathcal{O}(|\varphi|^2 \cdot |w|)$.

Minimal diagnostics: EXPSPACE-hard in $|\varphi|$.

Perspectives

- Advantages of minimal versus inductive diagnostic:
 - ▶ minimal diagnostic → localize fault "in the execution"
 - ▶ inductive diagnostic → localize fault "in the specification"
- Same technique applies to analysis of LTL model-checking counter-examples for ultimately-periodic signals
- Theory of implicants: possible extension from trace diagnostics to system diagnostics